Intro Complex Analysis, Lec 15, Review Analytic Functions, Amplitwist Concept, Harmonic Functions

preview_player
Показать описание


Lecture 15. (0:00) Celebrate pi day tomorrow (since spring break next week). (0:25) Do the quiz and search for project ideas in coming days. (2:41) Today will be a review day. (3:21) Abstract differentiation rules. (4:57) Local linearity, including a numerical animation made with Manipulate, and a reminder of the distinction between linear approximation for complex differentiable mappings and differentiable real planar mappings. (12:23) Analyticity, lack of analyticity (for functions involving conjugation, taking modulus, real and imaginary parts), polynomials are entire, and rational functions are analytic wherever they are defined. (15:45) Fundamental Theorem of Algebra. (17:55) Graph the modulus of f(z) as a 3-dimensional graph and a contour map to see where the roots are (and where the poles are for a rational function). (24:25) Amplitwist concept (from Tristan Needham's "Visual Complex Analysis") in terms of linear approximation. (32:02) Amplitwist concept in terms of infinitesimals. (35:19) Cauchy-Riemann equations in rectangular and polar coordinates, relationship to gradient vector fields and level curves for u and v. (37:42) Analytic functions are conformal (angle-preserving when the derivative is non-zero. (38:22) Representation of the derivative f' in terms of partial derivatives of u and v and application to the derivative of the complex exponential function being itself. (41:02) The constant function theorem over a (open and connected) domain. (42:12) Finding areas of images of regions under complex analytic mappings (writing the Jacobian determinant in terms of the derivative f'). Application to f(z) = z^2 for small disks near the origin. (52:14) Harmonic functions and Laplace's equation, including an example with discontinuous boundary values. (54:47) Relationship between analytic and harmonic functions. (55:39) Optimizing functions and harmonic functions over compact (closed and bounded) regions (Maximum principle), also look at the form of the determinant of the Hessian matrix. (59:04) Analytic and harmonic functions turn out to be infinitely differentiable. (1:00:12) Partial derivatives of harmonic functions are harmonic.

AMAZON ASSOCIATE
As an Amazon Associate I earn from qualifying purchases.
Комментарии
Автор

Many thanks Dr.Kinney, excellent series, your videos are truly beneficial .

mahdinoroozi
Автор

That's awesome how you plotted the modulus of the function in order to gain insight about the function's roots. I really appreciate how you incorporate the use of Mathematica in your classes. Visualization of topics that are complex (no pun) does a great deal to help students gain intuition and understand what is going on.

solidstatejake
Автор

funny, today is pi day and i happen to be watching this video

lokeshverma